XS: Lisp on Lego™ Mindstorms

| Taiichi Yuasa
Kyoto University

© Copyright 2003 by Taiichi Yuasa

Hardware organization of Mindstorms

ERTnrRsnrRTnrRTERTrERTRERTERSE TRt RtT TR R T s EReT R RReT e Reaan.

IR tower
serial or USB '(IR
((())))

16 MHz Hitachi H8 MPU with 16-bit
addressing space

m 32 KB ROM and 32 KB RAM
m LCD display & 4 buttons
m 3 effector ports & 3 sensor ports

m powered bv 6 AA batteries RCX 1.0, 1.5, or 2.0 attached
Q d / with Lego devices and bricks

Features of XS

Ll]

m Interactive program development
m read-eval-print loop
m interactive definition and re-definition of functions
m appropriate error message with backtrace
m trace and untrace functions
m Autonomous evaluator in RCX
m dynamic object allocation and garbage collection
m truly tail-recursive interpreter
m robust against program errors and stack / buffer overflow
m terminal interrupts
m Sufficient functionality to control robots
m Scheme-like language with no first-class continuations

m interface to Lego devices such as motors, sensors, lamps, sounds, ...

m event/ timer waiting and asynchronous event watchers

System overview of XS

Lo]

Linux or Windows
IR tower

serial or USB '(IR RCX
il ((()))) ./ |

reader

preprocessor < S expr > evaluator
printer LegOS
LNP

Data types

Lo L]

booleans: #f, #t
integers: 14-bit signed
empty list: ()
conses
functions
m built-in functions
m lambda closures (user-defined functions)
m symbols
m built-in symbols (names of built-in functions)
m user-defined symbols

Pseudo data types & reader constants

Converted by the Reader

m string list of character code
ex. “abc” (97 98 99)
m character ASCII code
ex. #¥a 97
m reader constants integer
:most-positive-integer, :most-negative-integer
a, :b, :c, :off, :forward, :back, :brake, :max-speed,
‘white, :black,
AO, :AmQ, ..., Gm8, A8, La0, :La#0, ..., :So#8, :La8, :pause

Common functions

RN R Ry

m top-level
m (define sym expr)
m (define (sym sym* [. sym]) expr*)
m (load string) ; load from the named file
m (trace sym)
= (untrace sym)
= (bye) , sayonara
m basic
m (quote object)
m (set! sym expr)
m (lambda (sym* [.sym]) expr*)

Common functions (cont.)

Lo

= control
m (begin expr*)
m (if expr expr [expr])
m (apply function object* list)
m (catch expr expr*)
m (throw object object)
m condition
m (and expr?)
m (Oor expr*)
m (not object)
m binding
m (let [sym] ((sym expr)*) expr®)
m (let* ((sym expr)*) expr*)
m (letrec ((sym expr)*) expr*)

Common functions (cont.)

L

m type predicates

(boolean? object)
(integer? object)
(null? object)
(pair? object)
(symbol? object)
(function? object)

®m comparison

(eg? object object)
(< int?)
(> int*)
(= int)
(>= int")
(<= int*)

m arithmetic

(+ int')

(- Int Int*)

(* int¥)

(/ int int)
(remainder int int)
(logand int int)
(logior int int)
(logxor int int)
(logshl int int)
(logshr int int)
(random int)

Common functions (cont.)

SE SRR S S SRR S FoE e SRR S S R B BERIEEE PR B S R R S SR SRR

m list processing

(car pair)

(cdr pair)

(cons object object)
(set-car! pair object)
(set-cdr! pair object)
(list object*)

(list* object* object)
(list-ref list int)
(append [list* object])
(assoc object a-list)
(member object list)
(length list)

(reverse list)

m |/O from/to fr
m (read)
m (read-char)
m (read-line)
m (write object)
m (write-char char)
m (write-string string)
m garbage collection
m (gc) ; returns # of free cells

Lego specmc functlons

m top-level
m (last-value) ; say that again?
= (ping) , are you alive?
= control
m (Sleep int) ; In 1/10 seconds

m (wait-until cond)
m (with-watcher ((cond . handler)*) . body)
, asynchronous event watchers
m system clock
m (time) ; In 1/10 seconds (overflows in 13 min)
m (reset-time)

Lego-specific functions (cont.)

PR

m light sensors
m (light-on {1|2|3})
m (light-off {1/2|3}) A
m (light {1]2|3})

m rotation sensors
= (rotation-on {1|2|3}) ’
= (rotation-off {1|2|3}) ’
m (rotation {1|2|3}) e

m temperature sensors S

m (temperature {1|2|3})
m touch sensors -

= (touched? {1[2/3}) ‘:5?;
~

Lego specmc functlons (Cont)

i motors
m (motor {:al:bl.c} {.off|.forward|:back|:brake})
m (speed {:al:b|:c} int)
m sounds
= (play ((pitch . length)*)) @
m (playing?)
= Prgm button
m (pressed?)
m LCD display
m (puts string)
m (putc char int)
m (cls)
m Dbattery level
m (battery)

m written entirely in C
m compiled by GNU cross compiler
m Sizes
m LegOS: 14 KB
m binary: 11 KB (including all built-in functions)
m |/O buffer: 256 bytes
m C stack: 512 words (= 1 KB)
m Vvariable stack: 256 words (= 0.5 KB)
m heap: 768 cells (= 3 KB)

Object representation

e

cons h
n - eap
misc (#t, #f, () car cdr
0| not used id |0|0
lambda closure
1 01 l
built-in function o — arg-info | body
0 id arg-info |0(1
user-defined symbol
1 10
built-in symbol :
. ” arg-info 110 oblink | value
Integer
14-bit signed int |1|1

Heap management

every cell occupies two words (= 4 bytes)

no need for compaction

free cells are linked together to form a free-list
mark & sweep, stop-the-world garbage collection

heap
free-list >

\/
Eal
—

Current status of XS project

L

m Linux version for RCX 1.0 & 1.5 (serial) completed

m Windows version and support for RCX 2.0 (USB) almost finished
by Franz Inc. (many thanks to John Foderaro)

m draft reference manual ready
m will soon start Web distribution as an open source
will be linked from http://www.yuasa.kuis.kyoto-u.ac.jp/~yuasa

and maybe from http://www.franz.com/

((C)

The project of XS is sponsored by the Information-technology Agency (IPA) of
Japan as an Exploratory Software Project

show time

Using XS: Preparation

R R R R R R e e R e R

m Install GNU cross compiler for Hitachi H8 CPU, available at:
http://legos.sourceforge.net/files/linux/
m Download legOS version 0.2.4 from:
http://legOS.sourceforge.net/files/common/
and “make” it.
m Connect the IR tower to your PC and turn on your RCX.
m Download legOS: .
% util/firmdI3 boot/legOS.srec - I -
m Download the XS evaluator: @ %
\ A B C W
% util/dll xs/eval.Ix ‘

® You may now turn off the RCX, since both legOS and the XS
evaluator are kept in the RAM as long as the batteries are alive.

http://legos.sourceforge.net/files/linux/
http://legos.sourceforge.net/files/linux/
http://legos.sourceforge.net/files/common/

Usmg XS Startlng up

m Turn on your RCX and press the Run button.
m Start the XS front end:

% XS/XS

Welcome to XS: Lisp on Lego Mindstorms

>
m Following the prompt >’, enter a top-level form:
>(cons 1 2)
(1.2
>

m To end the XS session, type (bye) or press Control-D:
>(bye)
sayonara
%

m Turn off your RCX.

Using XS: Error messages

R e e e

m When an error is detected, you will see an error message,
occasionally followed by a backtrace:

>(define (ints n) (if (= n 0) nil (cons n (ints (- n 1)))))
ints
>(ints 3)
Error: undefined variable -- nil
Backtrace: ints > ints > ints
>
m Even then, the system is still alive. You may fix the bug online.
>(define nil ())
nil
>(ints 3)
(321)
>

Usmg XS Trace and Untrace

m To see how some functions = To cancel the tracing, use

are invoked, use trace: untrace:
>(trace ints) >(untrace ints)
ints ints
>(ints 3) >(ints 3)
0>(ints 3) (321)
1>(ints 2)
2>(ints 1)
3>(ints 0)
3<(ints ()

2<(ints (1))
1<(ints (2 1))
O<(ints (32 1))
(321)
>

Using XS: Terminal interrupt

LD L L L L L L L]

m If your program enters into an infinite loop, press Control-C to abort
the current evaluation:

>(let loop () (loop))

---- you press Control-C here ----
Error: terminal interrupt
Backtrace: let > #<function>

>

m You may also press the View button of your RCX to abort the
evaluation:

>(let loop () (loop))
---- you press the View button here ----
Error: terminal interrupt

Backtrace: let > #<function>
>

Programming XS: Talil recursion

pRaRR R

m Because of the small size of RCX memory, nested function calls
sometimes cause stack overflow:

>(define (ints n) (if (=n 0) () (cons n (ints (- n 1)))))
ints

>(ints 20)

Error: RCX C stack overflow -- 2

Backtrace: ints > ints > ints > ints > ints > ints > ints > ints > ints > ints > ints >
ints > ints > ints > ints > ints > ints

m Talil recursion is a programming technique, effective to avoid stack
overflow:

>(define (ints n x) (if (= n 0) x (ints (- n 1) (cons n x))))
Ints

>(ints 20 ())
(1234567891011121314151617 18 19 20)

Programming XS: Loops

R e e

® You may have noticed XS has no loop constructs such
as while, for, do-while in C.

m This is because you can easily realize loop constructs
by using tail recursion

m while loop:

(let loop () (if condition (begin body (loop))))
m do-while loop:

(let loop () body (if condition (loop)))

Programming XS: Event watchers

o

m a watcher is an asynchronous event-driven handler
m watchers are established by with-watcher
(with-watcher ((event, . handler,) ... (event,. handler,))
. body)

m watcher, ... watcher, are activated in this order and remain
active during execution of body

m new watcher is given a priority higher than any active watcher

m only the watcher with the highest priority whose event
evaluates to true is triggered at a time

m when a handler is running, only watchers with higher priority
may be triggered

m when a watcher is triggered, the currently running handler is
suspended during execution of the handler of the triggered
watcher

m no watcher is triggered while events are being evaluated

Sample program Land Rover

Sample program: Land Rover

(begln
(speed :a (speed :c (speed :b :max-speed)))
(let loop ()
(motor :a (motor :c :forward))
(motor :b :off)
(play '((Re4 . 2) (:Do4 .1) (Red4 .1) (:Fa4 . 1) (Re4d . 1) ((Re4 . 2) (:Fa4 . 2)
(:So4 . 1) (:Do5 . 1) (:La4d . 2) (:Re4 . 2)))
(wait-until (or (touched? 2) (pressed?)))
(if (pressed?)
(motor :a (motor :c :0ff))
(begin
(motor :a (motor :c (motor :b :back)))
(sleep 5)
(motor (if (= (random 2) 0) :a :c) :forward)
(sleep 5)
(loop))
)

Sample program Land Rover |

(defrne (forward)
(motor :a (motor :c :forward))
(motor :b :off)
(play '(((Re4 . 2) ((Do4 .1) (Red4 .1) ((Fa4 . 1) (Re4 . 1) ((Re4 . 2) (:Fa4 . 2)
(:So4 . 1) (:Do5 . 1) (:La4d . 2) (:Re4 . 2))))

(begin
(speed :a (speed :c (speed :b :max-speed)))
(forward)
(with-watcher (((touched? 2)
(motor :a (motor :c (motor :b :back)))
(sleep 5)
(motor (if (= (random 2) 0) :a :c) :forward)
(sleep 5)
(forward)))
(wait-until (pressed?))
(motor :a (motor :c :0ff))

)

1. Tracks a line, while recording the movement as a list

2. Draws the line on a white paper, by replaying the recorded
movement

	XS: Lisp on Lego? Mindstorms
	Hardware organization of Mindstorms
	Features of XS
	System overview of XS
	Data types
	Pseudo data types & reader constants
	Common functions
	Common functions (cont.)
	Common functions (cont.)
	Common functions (cont.)
	Lego-specific functions
	Lego-specific functions (cont.)
	Lego-specific functions (cont.)
	The Evaluator
	Object representation
	Heap management
	Current status of XS project
	show time
	Using XS: Preparation
	Using XS: Starting up
	Using XS: Error messages
	Using XS: Trace and Untrace
	Using XS: Terminal interrupt
	Programming XS: Tail recursion
	Programming XS: Loops
	Programming XS: Event watchers
	Sample program: Land Rover
	Sample program: Land Rover
	Sample program: Land Rover II
	Tracing Rover

